RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. FIRST SEMESTER (July – December), 2011 Mid-Semester Examination, September, 2011

Date : 12/09/2011 Time : 11 am - 1 pm CHEMISTRY (Honours) Paper : I

Full Marks : 50

[3×1]

(Use separate answer scripts for each group)

<u>Group – A</u>

Answer **any two** questions :

1. a) Write the canonical forms of $Me_2N - C - OMe$ and indicate which one is the most contributing. Give CH_3

reasons.

b) Explain which C–N bond 'a' or 'b' has a shorter bond length in the following compound.

- c) The experimentally determined enthalpy of hydrogenation of cyclooctene and cycloocta-1, 3, 5, 7-tetraene to cyclooctane are -23 and -98 Kcalmol⁻¹, respectively. Calculate the resonance energy of the cyclooctatetraene and comment about the value.
- d) Using resonance arguments rank the radicals in order of increasing stability, least stable first. Explain $CH_2 = CH - CH = CH - \dot{C}H_2$, $\dot{C}H_2 - C - CH = CH_2$ [2×4 = 8] (I) $CH_2 = CH - \dot{C}H_2$ [2×4 = 8]

2. a) Assign R/S descriptors of the following molecules showing priority sequence of the groups attached.

	b)	Write the structure of the following compounds.	[3×1]
	0)	i) Butanone-(E)-Oxime	[0.12]
		ii) $(2E,4Z) - 2$, 4-hexadienoic acid	
		iii) D-Glyceraldehyde	
	c)	Cite examples through their structures according to the instructions given.	[2×1]
		i) A molecule having S_2 -axis showing the axis.	
		ii) A molecule having S_4 -axis showing the axis.	
3.	a)	Justify or Criticise :	[2×2]
	,	i) Meso tartaric acid is optically inactive due to presence of plane of symmetry.	
		ii) A molecule having (R) configuration must be dextrorotatory.	
	b)	Arrange the following C-H bonds in order of decreasing bond energy with reason.	[2]
		$\equiv C - H, \longrightarrow C - H, = CH - H$	
	c)	Compare the dipole moments of o-, m- and p- dichlorobenzenes.	[2]

<u>Group – B</u>

Answer **any two** questions :

- 4. a) What is magnetic Quantum Number? What are the informations provided by the principal Quantum number? [1+2]
 - b) Compare and contrast between—i) Lithium and Magnesium

ii) Beryllium and Aluminium $[1.5 \times 2 = 3]$

[3]

[2]

[2]

- c) What is exchange energy? Why $(n-1)d^9ns^2$ configuration is less stable than $(n-1)d^{10}ns^1$ configuration.
- 5. a) Write down the I.U.P.A.C name with symbol of the elements with atomic number 104 and 109. [1]
 - b) What is lanthanide contraction? Write down the causes of Lanthanide contraction. Write down the consequences of Lanthanide contraction. $1+1\cdot5+1\cdot5$
 - c) It is very difficult to separate the Lanthanides from each other; comment and justify. [2]
 - d) Amongst Ce(OH)₃ and Lu(OH)₃ which one is more basic and why?
- 6. a) Show the radial probability distribution function diagram of the orbitals of 3S, 3p, 3d in a hydrogen atom. Explain the above diagram. [3]
 - b) Calculate the velocity of an electron excited to the Third Bohr in a Hydrogen atom. [3]
 - c) "The orbital angular momentum of an electron does not give its total angular momentum"—Explain. Which Quantum number is used to supplement the orbital angular momentum. [3]

<u>Group – C</u>

Answer **any two** questions :

- 7. a) The vander-Waal's gas equation is given as $\left(P + \frac{a}{\overline{V}^2}\right)(\overline{V} b) = RT$. Show that 'b' is a measure of the repulsive force present among gas molecules. Also show that this force is inversely proportional to the molar volume of gas. [2+1]
 - b) For a vander-waal's gas $1.0 \text{ atm } \text{L}^2 \text{ mol}^{-2} \text{ and } \text{b} = 3 \times 10^{-2} \text{ L mol}^{-1}$. Calculate $\overline{\text{V}}$ at a pressure of 1 atm and T = 300° K. [3]
 - c) Define state function using Euler's raciprocity relation.

8. a) If α and β are coeff. of thermal expansion and compressibility coeff., respectively, then show that

$$\left(\frac{\mathrm{d}\alpha}{\mathrm{d}P}\right)_{\mathrm{T}} + \left(\frac{\mathrm{d}\beta}{\mathrm{d}T}\right)_{\mathrm{P}} = 0$$
[2]

- b) 1 mole of an ideal monatomic gas initially at $P_1=2$ atm, $T_1 = 273$ K is taken to a pressure of $P_2 = 4$ atm by the reversible path defined by $P_V =$ constant.
 - i) Calculate V_1 , V_2 and T_2
 - ii) Calculate q, w, Δu

- [4]
- c) Is it possible to liquify a gas which obeys the equation of state $P(\overline{V}-b) = RT$, explain. [2]
- 9. a) We have the following P–V curves for a real gas. One needs to make a change of state from A to B. This can be done in two ways— i) passing through a 2-phase region

ii) by-passing the 2-phase region

Show schematically both the pathways in the above type P–V isothermal. [2]

- b) Starting from the vander-Waals gas equation arrive at the reduced equation of state. [2]
- c) A real gas has temperature change during free expansion. Justify the situation, considering it a isolated system.
 [2]
- d) Using indicator diagram, show that work done in a reversible expansion is greater than that of irreversible one.
 [2]